Arachidonic acid stimulates protein tyrosine phosphorylation in vascular cells.

Published

Journal Article

Arachidonic acid and its metabolites are important cellular mediators. In this study, we report a novel role for arachidonic acid in vascular cell signaling. We tested the effects of exogenous arachidonic acid on protein tyrosine phosphorylation in cultured vascular endothelial and smooth muscle cells. Arachidonic acid stimulated the phosphorylation of tyrosine-containing proteins of approximately 58, 93, and 120 kDa in the three cell types studied. This response was dose dependent, with a maximum effect observed with 40 microM arachidonic acid. Phosphorylation was rapid and transient, reaching a peak 0.5 min after the addition of arachidonic acid and returning to baseline by 8 min. A common set of protein substrates was phosphorylated in smooth muscle cells treated with the Ca(2+)-mobilizing agonist endothelin, concomitant with an increase in endogenous unesterified arachidonic acid. To determine whether the protein tyrosine phosphorylation was due to arachidonic acid or to a metabolite, we used inhibitors of cyclooxygenase, lipoxygenase, and epoxygenase pathways. Ibuprofen, nordihydroguaiaretic acid, eicosatriynoic and eicosatetraynoic acids, and 8-methoxypsoralen failed to inhibit the arachidonic acid-mediated response. We also found increased protein tyrosine phosphorylation after treatment with oleic, linolenic and gamma-linoleic acid. These results suggest a mechanism of protein tyrosine phosphorylation that is directly stimulated by unmetabolized unsaturated fatty acids.

Full Text

Cited Authors

  • Buckley, BJ; Whorton, AR

Published Date

  • December 1995

Published In

Volume / Issue

  • 269 / 6 Pt 1

Start / End Page

  • C1489 - C1495

PubMed ID

  • 8572178

Pubmed Central ID

  • 8572178

Electronic International Standard Serial Number (EISSN)

  • 2163-5773

International Standard Serial Number (ISSN)

  • 0002-9513

Digital Object Identifier (DOI)

  • 10.1152/ajpcell.1995.269.6.c1489

Language

  • eng