Adaptive responses to peroxynitrite: increased glutathione levels and cystine uptake in vascular cells.

Published

Journal Article

We and others recently demonstrated increased glutathione levels, stimulated cystine uptake, and induced gamma-glutamylcysteinyl synthase (gamma-GCS) in vascular cells exposed to nitric oxide donors. Here we report the effects of peroxynitrite on glutathione levels and cystine uptake. Treatment of bovine aortic endothelial and smooth muscle cells with 3-morpholinosydnonimine (SIN-1), a peroxynitrite donor, resulted in transient depletion of glutathione followed by a prolonged increase beginning at 8-9 h. Concentration-dependent increases in glutathione of up to sixfold occurred 16-18 h after 0.05-2.5 mM SIN-1. Responses to SIN-1 were inhibited by copper-zinc superoxide dismutases and manganese(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachloride, providing evidence for peroxynitrite involvement. Because glutathione synthesis is regulated by amino acid availability, we also studied cystine uptake. SIN-1 treatment resulted in a prolonged increase in cystine uptake beginning at 6-9 h. Increases in cystine uptake after SIN-1 were blocked by inhibitors of protein and RNA synthesis, by extracellular glutamate but not by extracellular sodium. These studies suggest induction of the x(c)(-) pathway of amino acid uptake. A close correlation over time was observed for increases in cystine uptake and glutathione levels. In summary, vascular cells respond to chronic peroxynitrite exposure with adaptive increases in cellular glutathione and cystine transport.

Full Text

Cited Authors

  • Buckley, BJ; Whorton, AR

Published Date

  • October 2000

Published In

Volume / Issue

  • 279 / 4

Start / End Page

  • C1168 - C1176

PubMed ID

  • 11003597

Pubmed Central ID

  • 11003597

Electronic International Standard Serial Number (EISSN)

  • 1522-1563

International Standard Serial Number (ISSN)

  • 0363-6143

Digital Object Identifier (DOI)

  • 10.1152/ajpcell.2000.279.4.c1168

Language

  • eng