Mechanical unfolding intermediates in titin modules.
Journal Article (Journal Article)
The modular protein titin, which is responsible for the passive elasticity of muscle, is subjected to stretching forces. Previous work on the experimental elongation of single titin molecules has suggested that force causes consecutive unfolding of each domain in an all-or-none fashion. To avoid problems associated with the heterogeneity of the modular, naturally occurring titin, we engineered single proteins to have multiple copies of single immunoglobulin domains of human cardiac titin. Here we report the elongation of these molecules using the atomic force microscope. We find an abrupt extension of each domain by approximately 7 A before the first unfolding event. This fast initial extension before a full unfolding event produces a reversible 'unfolding intermediate' Steered molecular dynamics simulations show that the rupture of a pair of hydrogen bonds near the amino terminus of the protein domain causes an extension of about 6 A, which is in good agreement with our observations. Disruption of these hydrogen bonds by site-directed mutagenesis eliminates the unfolding intermediate. The unfolding intermediate extends titin domains by approximately 15% of their slack length, and is therefore likely to be an important previously unrecognized component of titin elasticity.
Full Text
Duke Authors
Cited Authors
- Marszalek, PE; Lu, H; Li, H; Carrion-Vazquez, M; Oberhauser, AF; Schulten, K; Fernandez, JM
Published Date
- November 1999
Published In
Volume / Issue
- 402 / 6757
Start / End Page
- 100 - 103
PubMed ID
- 10573426
Electronic International Standard Serial Number (EISSN)
- 1476-4687
International Standard Serial Number (ISSN)
- 0028-0836
Digital Object Identifier (DOI)
- 10.1038/47083
Language
- eng