Observation of nearly perfect irrotational flow in normal and superfluid strongly interacting Fermi gases.
Journal Article (Journal Article)
We study the hydrodynamic expansion of a rotating strongly interacting Fermi gas by releasing a cigar-shaped cloud with a known angular momentum from an optical trap. As the aspect ratio of the expanding cloud approaches unity, the angular velocity increases, indicating quenching of the moment of inertia I to as low as 0.05 of the rigid body value I(rig). Remarkably, we observe this behavior in both the superfluid and collisional normal fluid regimes, which obey nearly identical zero-viscosity irrotational hydrodynamics. We attribute irrotational flow in the normal fluid to a decay of the rotational part of the stream velocity during expansion, which occurs when the shear viscosity is negligible. Using conservation of angular momentum, we directly observe a fundamental result of irrotational hydrodynamics, I/I(rig) = delta2, where delta is the deformation parameter of the cloud.
Full Text
Duke Authors
Cited Authors
- Clancy, B; Luo, L; Thomas, JE
Published Date
- October 2007
Published In
Volume / Issue
- 99 / 14
Start / End Page
- 140401 -
PubMed ID
- 17930648
Electronic International Standard Serial Number (EISSN)
- 1079-7114
International Standard Serial Number (ISSN)
- 0031-9007
Digital Object Identifier (DOI)
- 10.1103/physrevlett.99.140401
Language
- eng