Recombinant acyl-CoA:cholesterol acyltransferase-1 (ACAT-1) purified to essential homogeneity utilizes cholesterol in mixed micelles or in vesicles in a highly cooperative manner.

Journal Article (Journal Article)

Acyl-coenzyme A:cholesterol acyltransferase (ACAT) is an integral membrane protein located in the endoplasmic reticulum. It catalyzes the formation of cholesteryl esters from cholesterol and long-chain fatty acyl coenzyme A. The first gene encoding the enzyme, designated as ACAT-1, was identified in 1993 through an expression cloning approach. We isolated a Chinese hamster ovary cell line that stably expresses the recombinant human ACAT-1 protein bearing an N-terminal hexahistidine tag. We purified this enzyme approximately 7000-fold from crude cell extracts by first solubilizing the cell membranes with the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate, then proceeding with an ACAT-1 monoclonal antibody affinity column and an immobilized metal affinity column. The final preparation is enzymologically active and migrates as a single band at 54 kDa on SDS-polyacrylamide gel electrophoresis. Pure ACAT-1 dispersed in mixed micelles containing sodium taurocholate, phosphatidylcholine, and cholesterol remains catalytically active. The cholesterol substrate saturation curves of the enzyme assayed either in mixed micelles or in reconstituted vesicles are both highly sigmoidal. The oleoyl-coenzyme A substrate saturation curves of the enzyme assayed under the same conditions are both hyperbolic. These results support the hypothesis that ACAT is an allosteric enzyme regulated by cholesterol.

Full Text

Duke Authors

Cited Authors

  • Chang, CC; Lee, CY; Chang, ET; Cruz, JC; Levesque, MC; Chang, TY

Published Date

  • December 25, 1998

Published In

Volume / Issue

  • 273 / 52

Start / End Page

  • 35132 - 35141

PubMed ID

  • 9857049

International Standard Serial Number (ISSN)

  • 0021-9258

Digital Object Identifier (DOI)

  • 10.1074/jbc.273.52.35132


  • eng

Conference Location

  • United States