Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts.

Published

Journal Article

Id proteins may control cell differentiation by interfering with DNA binding of transcription factors. Here we show that targeted disruption of the dominant negative helix-loop-helix proteins Id1 and Id3 in mice results in premature withdrawal of neuroblasts from the cell cycle and expression of neural-specific differentiation markers. The Id1-Id3 double knockout mice also display vascular malformations in the forebrain and an absence of branching and sprouting of blood vessels into the neuroectoderm. As angiogenesis both in the brain and in tumours requires invasion of avascular tissue by endothelial cells, we examined the Id knockout mice for their ability to support the growth of tumour xenografts. Three different tumours failed to grow and/or metastasize in Id1+/- Id3-/- mice, and any tumour growth present showed poor vascularization and extensive necrosis. Thus, the Id genes are required to maintain the timing of neuronal differentiation in the embryo and invasiveness of the vasculature. Because the Id genes are expressed at very low levels in adults, they make attractive new targets for anti-angiogenic drug design.

Full Text

Duke Authors

Cited Authors

  • Lyden, D; Young, AZ; Zagzag, D; Yan, W; Gerald, W; O'Reilly, R; Bader, BL; Hynes, RO; Zhuang, Y; Manova, K; Benezra, R

Published Date

  • October 14, 1999

Published In

Volume / Issue

  • 401 / 6754

Start / End Page

  • 670 - 677

PubMed ID

  • 10537105

Pubmed Central ID

  • 10537105

International Standard Serial Number (ISSN)

  • 0028-0836

Digital Object Identifier (DOI)

  • 10.1038/44334

Language

  • eng

Conference Location

  • England