Cox regression methods for two-stage randomization designs.

Published

Journal Article

Two-stage randomization designs (TSRD) are becoming increasingly common in oncology and AIDS clinical trials as they make more efficient use of study participants to examine therapeutic regimens. In these designs patients are initially randomized to an induction treatment, followed by randomization to a maintenance treatment conditional on their induction response and consent to further study treatment. Broader acceptance of TSRDs in drug development may hinge on the ability to make appropriate intent-to-treat type inference within this design framework as to whether an experimental induction regimen is better than a standard induction regimen when maintenance treatment is fixed. Recently Lunceford, Davidian, and Tsiatis (2002, Biometrics 58, 48-57) introduced an inverse probability weighting based analytical framework for estimating survival distributions and mean restricted survival times, as well as for comparing treatment policies at landmarks in the TSRD setting. In practice Cox regression is widely used and in this article we extend the analytical framework of Lunceford et al. (2002) to derive a consistent estimator for the log hazard in the Cox model and a robust score test to compare treatment policies. Large sample properties of these methods are derived, illustrated via a simulation study, and applied to a TSRD clinical trial.

Full Text

Duke Authors

Cited Authors

  • Lokhnygina, Y; Helterbrand, JD

Published Date

  • June 2007

Published In

Volume / Issue

  • 63 / 2

Start / End Page

  • 422 - 428

PubMed ID

  • 17425633

Pubmed Central ID

  • 17425633

International Standard Serial Number (ISSN)

  • 0006-341X

Digital Object Identifier (DOI)

  • 10.1111/j.1541-0420.2007.00707.x

Language

  • eng

Conference Location

  • United States