Sustained gene expression in retrovirally transduced, engrafting human hematopoietic stem cells and their lympho-myeloid progeny.

Published

Journal Article

Inefficient retroviral-mediated gene transfer to human hematopoietic stem cells (HSC) and insufficient gene expression in progeny cells derived from transduced HSC are two major problems associated with HSC-based gene therapy. In this study we evaluated the ability of a murine stem cell virus (MSCV)-based retroviral vector carrying the low-affinity human nerve growth factor receptor (NGFR) gene as reporter to maintain gene expression in transduced human hematopoietic cells. CD34(+) cells lacking lineage differentiation markers (CD34(+)Lin-) isolated from human bone marrow and mobilized peripheral blood were transduced using an optimized clinically applicable protocol. Under the conditions used, greater than 75% of the CD34(+) cell population retained the Lin- phenotype after 4 days in culture and at least 30% of these expressed a high level of NGFR (NGFR+) as assessed by fluorescence-activated cell sorter analysis. When these CD34(+)Lin-NGFR+ cells sorted 2 days posttransduction were assayed in vitro in clonogenic and long-term stromal cultures, sustained reporter expression was observed in differentiated erythroid and myeloid cells derived from transduced progenitors, and in differentiated B-lineage cells after 6 weeks. Moreover, when these transduced CD34(+)Lin-NGFR+ cells were used to repopulate human bone grafts implanted in severe combined immunodeficient mice, MSCV-directed NGFR expression could be detected on 37% +/- 6% (n = 5) of the donor-type human cells recovered 9 weeks postinjection. These findings suggest potential utility of the MSCV retroviral vector in the development of effective therapies involving gene-modified HSC.

Full Text

Duke Authors

Cited Authors

  • Cheng, L; Du, C; Lavau, C; Chen, S; Tong, J; Chen, BP; Scollay, R; Hawley, RG; Hill, B

Published Date

  • July 1, 1998

Published In

Volume / Issue

  • 92 / 1

Start / End Page

  • 83 - 92

PubMed ID

  • 9639503

Pubmed Central ID

  • 9639503

International Standard Serial Number (ISSN)

  • 0006-4971

Language

  • eng

Conference Location

  • United States