Prolactin induction of insulin gene transcription: roles of glucose and signal transducer and activator of transcription 5.

Journal Article (Journal Article)

GH and PRL stimulate insulin production in pancreatic beta-cells through induction of insulin gene transcription. The transcriptional effects of GH are mediated through the binding of signal transducer and activator of transcription-5 (STAT5) to a consensus recognition sequence (TTCnnnGAA) in the rat insulin-1 promoter. In this study we demonstrate that PRL also induces the binding of STAT5 proteins to the rat insulin-1 STAT5 motif. However, the magnitude of binding of STAT5 nuclear proteins, as assessed by electrophoretic mobility shift assays, was only 1/30th that of the binding of the same STAT5 proteins to the beta-casein STAT5 site. The differences in the affinities of the rat insulin-1 and beta-casein STAT5 motifs are explained in part by differences in promoter sequences flanking the STAT5 sites. To assess the importance of the STAT motif in PRL induction of insulin gene transcription, we deleted the STAT5 consensus sequence in the rat insulin 1 promoter, cloned the truncated promoter upstream of the luciferase reporter gene, and transfected the construct into rat insulinoma (INS-1) cells. The transcriptional activity of this construct was compared with that of the wild-type promoter. Although deletion of the STAT5 site in the promoter reduced the basal luciferase activity, the response to PRL was unaffected. PRL also induced transcription of constructs containing the wild-type human insulin promoter or the rat insulin-2 promoter, which contain no classic STAT5 sequences. The transcriptional effect of PRL was manifest even when cells were incubated in glucose-free medium, indicating that the action of the hormone is not mediated solely through changes in glucose uptake or glucose metabolism. To identify PRL-responsive regions of the rat and human insulin promoters, we constructed a series of promoter truncations and assessed their responsiveness to PRL. A PRL-responsive region of the rat insulin-1 promoter was localized between nucleotides -165 and -109. A PRL-responsive region of the human insulin promoter was localized between nucleotides -346 and -250. Additional regions of the human and rat insulin-1 promoters were required for PRL induction of a heterologous, minimal thymidine kinase promoter, suggesting that there are multiple PRL-responsive elements in the insulin genes. These observations suggest a glucose- and STAT5-independent pathway by which PRL may induce insulin gene transcription.

Full Text

Duke Authors

Cited Authors

  • Fleenor, DE; Freemark, M

Published Date

  • July 2001

Published In

Volume / Issue

  • 142 / 7

Start / End Page

  • 2805 - 2810

PubMed ID

  • 11415999

International Standard Serial Number (ISSN)

  • 0013-7227

Digital Object Identifier (DOI)

  • 10.1210/endo.142.7.8267


  • eng

Conference Location

  • United States