Skip to main content

Quantifying skeletal muscle properties in cadaveric test specimens: effects of mechanical loading, postmortem time, and freezer storage.

Publication ,  Journal Article
Van Ee, CA; Chasse, AL; Myers, BS
Published in: Journal of biomechanical engineering
February 2000

Investigators currently lack the data necessary to define the state of skeletal muscle properties within cadaveric specimens. The purpose of this study is to define the temporal changes in the postmortem properties of skeletal muscle as a function of mechanical loading and freezer storage. The tibialis anterior of the New Zealand white rabbit was chosen for study. Modulus and no-load strain were found to vary significantly from live after eight hours postmortem. Following the changes that occur during rigor mortis, a stable region of postmortem, post-rigor properties occurred between 36 to 72 hours postmortem. A freeze-thaw process was not found to have a significant effect on the post-rigor response. The first loading cycle response of post-rigor muscle was unrepeatable but stiffer than live passive muscle. After preconditioning, the post-rigor muscle response was repeatable. The preconditioned post-rigor response was less stiff than the live passive response due to a significant increase in no-load strain. Failure properties of postmortem muscle were found to be significantly different from live passive muscle with a significant decrease in failure stress (61 percent) and energy (81 percent), while failure strain was unchanged. These results suggest that the post-rigor response of cadaveric muscle is unaffected by freezing but sensitive to even a few cycles of mechanical loading.

Duke Scholars

Published In

Journal of biomechanical engineering

DOI

EISSN

1528-8951

ISSN

0148-0731

Publication Date

February 2000

Volume

122

Issue

1

Start / End Page

9 / 14

Related Subject Headings

  • Weight-Bearing
  • Time Factors
  • Stress, Mechanical
  • Rabbits
  • Postmortem Changes
  • Muscle, Skeletal
  • Elasticity
  • Cryopreservation
  • Cadaver
  • Biomedical Engineering
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Van Ee, C. A., Chasse, A. L., & Myers, B. S. (2000). Quantifying skeletal muscle properties in cadaveric test specimens: effects of mechanical loading, postmortem time, and freezer storage. Journal of Biomechanical Engineering, 122(1), 9–14. https://doi.org/10.1115/1.429621
Van Ee, C. A., A. L. Chasse, and B. S. Myers. “Quantifying skeletal muscle properties in cadaveric test specimens: effects of mechanical loading, postmortem time, and freezer storage.Journal of Biomechanical Engineering 122, no. 1 (February 2000): 9–14. https://doi.org/10.1115/1.429621.
Van Ee CA, Chasse AL, Myers BS. Quantifying skeletal muscle properties in cadaveric test specimens: effects of mechanical loading, postmortem time, and freezer storage. Journal of biomechanical engineering. 2000 Feb;122(1):9–14.
Van Ee, C. A., et al. “Quantifying skeletal muscle properties in cadaveric test specimens: effects of mechanical loading, postmortem time, and freezer storage.Journal of Biomechanical Engineering, vol. 122, no. 1, Feb. 2000, pp. 9–14. Epmc, doi:10.1115/1.429621.
Van Ee CA, Chasse AL, Myers BS. Quantifying skeletal muscle properties in cadaveric test specimens: effects of mechanical loading, postmortem time, and freezer storage. Journal of biomechanical engineering. 2000 Feb;122(1):9–14.

Published In

Journal of biomechanical engineering

DOI

EISSN

1528-8951

ISSN

0148-0731

Publication Date

February 2000

Volume

122

Issue

1

Start / End Page

9 / 14

Related Subject Headings

  • Weight-Bearing
  • Time Factors
  • Stress, Mechanical
  • Rabbits
  • Postmortem Changes
  • Muscle, Skeletal
  • Elasticity
  • Cryopreservation
  • Cadaver
  • Biomedical Engineering