New insights into the proton-dependent oxygen affinity of Root effect haemoglobins.

Published

Journal Article (Review)

A long-standing puzzle with regard to protein structure/function relationships is the proton-dependent modification of haemoglobin (Hb) structure that causes oxygen to be unloaded from Root effect Hbs into the swim bladders and eyes of fish even against high oxygen pressure gradients. Although oxygen unloading in Root effect Hbs has generally been attributed to proton-dependent stabilization of the T-state, protonation of Root effect Hbs can alter their ligand affinities in both R- and T-state conformations and either stabilize the T-state or destabilize the R-state. The C-terminal residues that are so important in the Bohr effect of human Hb appear to be involved in the Root effects of some fish Hbs and not in others, indicating that several evolutionary pathways have resulted in expression of highly pH-dependent Hbs. New data are presented that show surprising similarities in the pH- and anion-dependence of sulfhydryl group reactivity and anaerobic oxidation of human and fish Hbs. The available evidence supports the concept that in both Bohr effect and Root effect Hbs a large steric component acts in addition to quaternary shifts between R and T conformations to regulate ligand affinity. Allosteric effectors moderate these steric effects within both R- and T-state conformations and allow for an elegant match between Hb function and the wide-ranging physiological needs of diverse organisms.

Full Text

Duke Authors

Cited Authors

  • Bonaventura, C; Crumbliss, AL; Weber, RE

Published Date

  • November 2004

Published In

Volume / Issue

  • 182 / 3

Start / End Page

  • 245 - 258

PubMed ID

  • 15491404

Pubmed Central ID

  • 15491404

Electronic International Standard Serial Number (EISSN)

  • 1365-201X

International Standard Serial Number (ISSN)

  • 0001-6772

Digital Object Identifier (DOI)

  • 10.1111/j.1365-201x.2004.01359.x

Language

  • eng