GePSi: A generic plant simulator based on object-oriented principles

Published

Journal Article

The Generic Plant Simulator (GePSi) is a physiologically-based model that combines modules for canopy, root environment, water relations, and potential growth to generate whole-plant carbon, nitrogen, and water balances. The version presented here is coded in the object-oriented programming (OOP) language, C+ +, to enhance the implementation of modularity. In the aboveground aerial environment, the Weather module defines the weather conditions above a canopy, and MicroWeather defines the vertical profiles of micro-meteorological variables in a canopy. The below ground soil environment contains the Soil Property modules, which define vertical profiles of physical and chemical variables in a soil column. The 'part-of hierarchy in GePSi follows the structure of a real plant: the Plant module calls canopy and root system modules: the Canopy module, in turn, calls leaf, stem and fruit modules; and the Root System module calls coarse and fine root modules, etc. Our long-term goal is for GePSi to serve as a template for building a plant growth simulator by simply selecting appropriate modules for the question being asked. We are building a suite of plant modules (and their interfaces) based on general principles that are fundamentally similar for different kinds of plants. This includes photosynthesis, growth, nutrient and carbon allocation, water uptake, etc. These modules can be parameterized for specific species, related groups of species, life-forms, or broader groups depending on how variable the processes are across the groupings and the amount of unexplained variability that is acceptable for the question being investigated. Our modular-based approach has numerous advantages, including improving the understanding of the model, reducing duplication of effort, and facilitating the adaptation of the model for different sites and ecosystems.

Full Text

Duke Authors

Cited Authors

  • Chen, JL; Reynolds, JF

Published Date

  • January 1, 1997

Published In

Volume / Issue

  • 94 / 1

Start / End Page

  • 53 - 66

International Standard Serial Number (ISSN)

  • 0304-3800

Digital Object Identifier (DOI)

  • 10.1016/S0304-3800(96)01928-X

Citation Source

  • Scopus