Progressive island colonization and ancient origin of Hawaiian Metrosideros (Myrtaceae)

Journal Article

Knowledge of the evolutionary history of plants that are ecologically dominant in modern ecosystems is critical to understanding the historical development of those ecosystems. Metrosideros is a plant genus found in many ecological and altitudinal zones throughout the Pacific. In the Hawaiian Islands, Metrosideros polymorpha is an ecologically dominant species and is also highly polymorphic in both growth form and ecology. Using 10 non-coding chloroplast regions, we investigated haplotype diversity in the five currently recognized Hawaiian Metrosideros species and an established out-group, Metrosideros collina, from French Polynesia. Multiple haplotype groups were found, but these did not match morphological delimitations. Alternative morphologies sharing the same haplotype, as well as similar morphologies occurring within several distinct island clades, could be the result of developmental plasticity, parallel evolution or chloroplast capture. The geographical structure of the data is consistent with a pattern of age progressive island colonizations and suggests de novo intra-island diversification. If single colonization events resulted in a similar array of morphologies on each island, this would represent parallel radiations within a single, highly polymorphic species. However, we were unable to resolve whether the pattern is instead explained by ancient introgression and incomplete lineage sorting resulting in repeated chloroplast capture. Using several calibration methods, we estimate the colonization of the Hawaiian Islands to be potentially as old as 3.9 (-6.3)Myr with an ancestral position for Kaua'i in the colonization and evolution of Metrosideros in the Hawaiian Islands. This would represent a more ancient arrival of Metrosideros to this region than previous studies have suggested. © 2008 The Royal Society.

Full Text

Duke Authors

Cited Authors

  • Percy, DM; Garver, AM; Wagner, WL; James, HF; Cunningham, CW; Miller, SE; Fleischer, RC

Published Date

  • 2008

Published In

Volume / Issue

  • 275 / 1642

Start / End Page

  • 1479 - 1490

PubMed ID

  • 18426752

International Standard Serial Number (ISSN)

  • 0962-8452

Digital Object Identifier (DOI)

  • 10.1098/rspb.2008.0191