Cryptic variation in butterfly eyespot development: the importance of sample size in gene expression studies.

Journal Article (Journal Article)

Previous studies have shown that development can be robust to variation in parameters such as the timing or level of gene expression. This leads to the prediction that natural populations should be able to host developmental variation that has little phenotypic effect. Cryptic variation is of particular interest because it can result in selectable phenotypes when "released" by environmental or genetic factors. Currently, however, we have little idea of how variation is distributed between genes or over time in pattern formation processes. Here we survey expression of Notch (N), Spalt (Sal), and Engrailed (En) during butterfly eyespot determination to better understand how pattern formation may vary within a population. We observed substantial heterochronic variance in the progress of spatial expression patterns for all three proteins, suggesting some degree of developmental buffering in eyespot development. Peak variance for different proteins was found at both early and late stages of development, contrasting with previous models suggesting that the distribution of variance should be more temporally focused during pattern formation. We speculate that our observations are representative of a standing reservoir of cryptic variation that may contribute to phenotypic evolution under certain circumstances. Our results also provide a strong cautionary message that gene expression studies with limited sample sizes can be positively misleading in terms of inferring expression pattern time series, as well as for making cross-species phylogenetic comparisons.

Full Text

Duke Authors

Cited Authors

  • Reed, RD; Chen, P-H; Frederik Nijhout, H

Published Date

  • January 1, 2007

Published In

Volume / Issue

  • 9 / 1

Start / End Page

  • 2 - 9

PubMed ID

  • 17227362

Pubmed Central ID

  • 17227362

Electronic International Standard Serial Number (EISSN)

  • 1525-142X

International Standard Serial Number (ISSN)

  • 1520-541X

Digital Object Identifier (DOI)

  • 10.1111/j.1525-142x.2006.00133.x


  • eng