Non invasive high resolution in vivo imaging of alpha-naphthylisothiocyanate (ANIT) induced hepatobiliary toxicity in STII medaka.

Journal Article (Journal Article)

A novel transparent stock of medaka (Oryzias latipes; STII), homozygous recessive for all four pigments (iridophores, xanthophores, leucophores, melanophores), permits transcutaneous, high resolution (<1 microm) imaging of internal organs and tissues in living individuals. We applied this model to in vivo investigation of alpha -naphthylisothiocyanate (ANIT) induced hepatobiliary toxicity. Distinct phenotypic responses to ANIT involving all aspects of intrahepatic biliary passageways (IHBPs), particularly bile preductular epithelial cells (BPDECs), associated with transitional passageways between canaliculi and bile ductules, were observed. Alterations included: attenuation/dilation of bile canaliculi, bile preductular lesions, hydropic vacuolation of hepatocytes and BPDECs, mild BPDEC hypertrophy, and biliary epithelial cell (BEC) hyperplasia. Ex vivo histological, immunohistochemical, and ultrastructural studies were employed to aid in interpretation of, and verify, in vivo findings. 3D reconstructions from in vivo investigations provided quantitative morphometric and volumetric evaluation of ANIT exposed and untreated livers. The findings presented show for the first time in vivo evaluation of toxicity in the STII medaka hepatobiliary system, and, in conjunction with prior in vivo work characterizing normalcy, advance our comparative understanding of this lower vertebrate hepatobiliary system and its response to toxic insult.

Full Text

Duke Authors

Cited Authors

  • Hardman, R; Kullman, S; Yuen, B; Hinton, DE

Published Date

  • January 2008

Published In

Volume / Issue

  • 86 / 1

Start / End Page

  • 20 - 37

PubMed ID

  • 18022256

Pubmed Central ID

  • PMC2724681

Electronic International Standard Serial Number (EISSN)

  • 1879-1514

International Standard Serial Number (ISSN)

  • 0166-445X

Digital Object Identifier (DOI)

  • 10.1016/j.aquatox.2007.09.014


  • eng