Skip to main content
Journal cover image

Reversible unfolding of fibronectin type III and immunoglobulin domains provides the structural basis for stretch and elasticity of titin and fibronectin.

Publication ,  Journal Article
Erickson, HP
Published in: Proc Natl Acad Sci U S A
October 11, 1994

The elastic protein titin comprises a tandem array of fibronectin type III and immunoglobulin domains, which are structurally similar 7-strand beta-sandwiches. A proposed mechanism for stretching titin, by sequential denaturation of individual fibronectin type III-immunoglobulin domains in response to applied tension, is analyzed here quantitatively. The folded domain is approximately 4 nm long, and the unraveled polypeptide can extend to 29 nm, providing a 7-fold stretch over the relaxed length. Elastic recoil is achieved by refolding of the denatured domains when the force is released. The critical force required to denature a domain is calculated to be 3.5-5 pN, based on a net free energy for denaturation of 7-14 kcal/mol, plus 5 kcal/mol to extend the polypeptide (1 cal = 4.184 J). This force is comparable to the 2- to 7-pN force generated by single myosin or kinesin molecules. The force needed to pull apart a noncovalent protein-protein interface is estimated here to be 10-30 pN, implying that titin will stretch internally before the molecule is pulled from its attachment at the Z band. Many extracellular matrix and cell adhesion molecules, such as fibronectin, contain tandem arrays of fibronectin type III domains. Both single molecules and matrix fibers should have elastic properties similar to titin.

Duke Scholars

Published In

Proc Natl Acad Sci U S A

DOI

ISSN

0027-8424

Publication Date

October 11, 1994

Volume

91

Issue

21

Start / End Page

10114 / 10118

Location

United States

Related Subject Headings

  • Protein Structure, Secondary
  • Protein Kinases
  • Protein Folding
  • Protein Denaturation
  • Protein Conformation
  • Myosins
  • Muscle Proteins
  • Models, Structural
  • Membrane Proteins
  • Kinesins
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Erickson, H. P. (1994). Reversible unfolding of fibronectin type III and immunoglobulin domains provides the structural basis for stretch and elasticity of titin and fibronectin. Proc Natl Acad Sci U S A, 91(21), 10114–10118. https://doi.org/10.1073/pnas.91.21.10114
Erickson, H. P. “Reversible unfolding of fibronectin type III and immunoglobulin domains provides the structural basis for stretch and elasticity of titin and fibronectin.Proc Natl Acad Sci U S A 91, no. 21 (October 11, 1994): 10114–18. https://doi.org/10.1073/pnas.91.21.10114.
Erickson, H. P. “Reversible unfolding of fibronectin type III and immunoglobulin domains provides the structural basis for stretch and elasticity of titin and fibronectin.Proc Natl Acad Sci U S A, vol. 91, no. 21, Oct. 1994, pp. 10114–18. Pubmed, doi:10.1073/pnas.91.21.10114.
Journal cover image

Published In

Proc Natl Acad Sci U S A

DOI

ISSN

0027-8424

Publication Date

October 11, 1994

Volume

91

Issue

21

Start / End Page

10114 / 10118

Location

United States

Related Subject Headings

  • Protein Structure, Secondary
  • Protein Kinases
  • Protein Folding
  • Protein Denaturation
  • Protein Conformation
  • Myosins
  • Muscle Proteins
  • Models, Structural
  • Membrane Proteins
  • Kinesins