Electrochemical cleavage of N=N bonds at a Mo2(mu-SMe)3 site relevant to the biological reduction of dinitrogen at a bimetallic sulfur centre.

Published

Journal Article

The reduction of diazene complexes [Mo(2)Cp(2)(mu-SMe)(3)(mu-eta(2)-H-N=N-R)](+) (R=Ph (3 a); Me (3 b)) and of the hydrazido(2-) derivative [Mo(2)Cp(2)(mu-SMe)(3)[mu-eta(1)-N=N(Me)H]](+) (1 b) has been studied by cyclic voltammetry, controlled-potential electrolysis, and coulometry in THF. The electrochemical reduction of 3 a in the presence of acid leads to cleavage of the N=N bond and produces aniline and either the amido complex [Mo(2)Cp(2)(mu-SMe)(3)(mu-NH(2))] 4 or the ammine complex [Mo(2)Cp(2)(mu-SMe)(3)(NH(3))(X)] 5, depending on the initial concentration of acid (HX=HTsO or CF(3)CO(2)H). The N=N bond of the methyldiazene analogue 3 b is not cleaved under the same conditions. The ability of 3 a but not 3 b to undergo reductive cleavage of the N=N bond is attributed to electronic control of the strength of the Mo-N(R) bond by the R group. The electrochemical reduction of the methylhydrazido(2-) compound 1 b in the presence of HX also results in cleavage of the N=N bond, with formation of methylamine, 4 (or 5) and the methyldiazenido complex [Mo(2)Cp(2)(mu-SMe)(3)(mu-eta(1)-N=N-Me)]. Formation of the last of these complexes indicates that two mechanisms (N=N bond cleavage and possibly H(2) production) are operative. A pathway for the reduction of N(2) at a dinuclear site of FeMoco is proposed on the basis of these results.

Full Text

Cited Authors

  • Le Grand, N; Muir, KW; Pétillon, FY; Pickett, CJ; Schollhammer, P; Talarmin, J

Published Date

  • July 2002

Published In

Volume / Issue

  • 8 / 14

Start / End Page

  • 3115 - 3127

PubMed ID

  • 12203341

Pubmed Central ID

  • 12203341

Electronic International Standard Serial Number (EISSN)

  • 1521-3765

International Standard Serial Number (ISSN)

  • 0947-6539

Digital Object Identifier (DOI)

  • 10.1002/1521-3765(20020715)8:14<3115::aid-chem3115>3.0.co;2-z

Language

  • eng