Delta wing with store limit-cycle-oscillation modeling using a high-fidelity structural model

Published

Journal Article

The flutter and limit-cycle oscillation behavior of a 45-deg delta-wing-store model with various store spanwise locations is studied using an aeroelastic model that includes a high-fidelity nonlinear finite element structural solver and a vortex-lattice aerodynamic model. The store aerodynamics are modeled using slender-body theory. The computed results are compared with a previous computational model and with the experiment The zero-angle-of-attack flutter behavior of the wing-store configuration is shown to be sensitive to the spanw ise store location. This is predicted accurately using the current methodology. Limit-cycle oscillation results for zero angle of attack are computed for two store spanwise locations and compare favorably with the experiment For a clean-wing configuration and a configuration that had the store located at y/c = 0.291, the flutter results show very little sensitivity to the model angle of attack. This too was predicted accurately using the current model. However, when the store is placed at y/c = 0.545, the experimental flutter data show a large sensitivity to angle of attack, with the flutter velocity decreasing by almost 20% when the model is placed at an angle of attack of 2 deg. This is not predicted in the current work and it is possible that unmodeled flow physics such as leading-edge vortices are the cause of this difference. Copyright © 2008 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

Full Text

Duke Authors

Cited Authors

  • Attar, PJ; Dowell, EH; Tang, D

Published Date

  • May 1, 2008

Published In

Volume / Issue

  • 45 / 3

Start / End Page

  • 1054 - 1061

International Standard Serial Number (ISSN)

  • 0021-8669

Digital Object Identifier (DOI)

  • 10.2514/1.32217

Citation Source

  • Scopus