The anatomy of microbial cell state transitions in response to oxygen

Journal Article

Adjustment of physiology in response to changes in oxygen availability is critical for the survival of all organisms. However, the chronology of events and the regulatory processes that determine how and when changes in environmental oxygen tension result in an appropriate cellular response is not well understood at a systems level. Therefore, transcriptome, proteome, ATP, and growth changes were analyzed in a halophilic archaeon to generate a temporal model that describes the cellular events that drive the transition between the organism's two opposing cell states of anoxic quiescence and aerobic growth. According to this model, upon oxygen influx, an initial burst of protein synthesis precedes ATP and transcription induction, rapidly driving the cell out of anoxic quiescence, culminating in the resumption of growth. This model also suggests that quiescent cells appear to remain actively poised for energy production from a variety of different sources. Dynamic temporal analysis of relationships between transcription and translation of key genes suggests several important mechanisms for cellular sustenance under anoxia as well as specific instances of post-transcriptional regulation. ©2007 by Cold Spring Harbor Laboratory Press.

Full Text

Duke Authors

Cited Authors

  • Schmid, AK; Reiss, DJ; Kaur, A; Pan, M; King, N; Van, PT; Hohmann, L; Martin, DB; Baliga, NS

Published Date

  • 2007

Published In

Volume / Issue

  • 17 / 10

Start / End Page

  • 1399 - 1413

PubMed ID

  • 17785531

International Standard Serial Number (ISSN)

  • 1088-9051

Digital Object Identifier (DOI)

  • 10.1101/gr.6728007