Estimation of the heart respiratory motion with applications for cone beam computed tomography imaging: a simulation study.


Journal Article

Computed tomography (CT) reconstruction methods assume imaging of static objects; object movement during projection data acquisition causes tomogram artifacts. The continuously moving heart, therefore, represents a complicated imaging case. The associated problems due to the heart beating can be overcome either by using very short projection acquisition times, during which the heart may be considered static, or by ECG-gated acquisition. In the latter case, however, the acquisition of a large number of projections may not be completed in a single breath hold, thus heart displacement occurs as an additional problem. This problem has been addressed by applying heart motion models in various respiratory motion compensation algorithms. Our paper focuses on cone beam computed tomography (CBCT), performed in conjunction with isocentric, fluoroscopic equipment, and continuous ECG and respiratory monitoring. Such equipment is used primarily for in-theater three-dimensional (3-D) imaging and benefits particularly from the recent developments in flat panel detector technologies. The objectives of this paper are: i) to develop a model for the motion of the heart due to respiration during the respiratory cycle; ii) to apply this model to the tomographic reconstruction algorithm, in order to account for heart movement due to respiration in the reconstruction; and iii) to initially evaluate this method by means of simulation studies. Based on simulation studies, we were able to demonstrate that heart displacement due to respiration can be estimated from the same projection data, required for a CBCT reconstruction. Our paper includes semiautomatic segmentation of the heart on the X-ray projections and reconstruction of a convex 3-D-heart object that performs the same motion as the heart during respiration, and use of this information into the CBCT reconstruction algorithm. The results reveal significant image quality improvements in cardiac image reconstruction.

Full Text

Duke Authors

Cited Authors

  • Buliev, IG; Badea, CT; Kolitsi, Z; Pallikarakis, N

Published Date

  • December 2003

Published In

Volume / Issue

  • 7 / 4

Start / End Page

  • 404 - 411

PubMed ID

  • 15000366

Pubmed Central ID

  • 15000366

International Standard Serial Number (ISSN)

  • 1089-7771

Digital Object Identifier (DOI)

  • 10.1109/titb.2003.821336


  • eng

Conference Location

  • United States