Surface-initiated enzymatic polymerization of DNA.
Journal Article (Journal Article)
We describe a technique to synthesize DNA homopolymers on a surface using surface-initiated enzymatic polymerization (SIEP) with terminal deoxynucleotidyl transferase (TdTase), an enzyme that repetitively adds mononucleotides to the 3'-end of oligonucleotides. The thickness of the synthesized DNA layer was found to depend on the deoxymononucleotide monomer, in the order of dATP > dTTP > dGTP approximately dCTP. In addition, the composition and the surface density of oligonucleotide initiators were also important in controlling the extent of DNA polymerization. The extension of single-stranded DNA chains by SIEP was further verified by their binding to antibodies specific to oligonucleotides. TdTase-mediated SIEP can also be used to grow spatially defined three-dimensional DNA structures by soft lithography and is a new tool for bioinspired fabrication at the micro- and nanoscale.
Full Text
Duke Authors
Cited Authors
- Chow, DC; Chilkoti, A
Published Date
- November 2007
Published In
Volume / Issue
- 23 / 23
Start / End Page
- 11712 - 11717
PubMed ID
- 17929953
Electronic International Standard Serial Number (EISSN)
- 1520-5827
International Standard Serial Number (ISSN)
- 0743-7463
Digital Object Identifier (DOI)
- 10.1021/la701630g
Language
- eng