Impaired nitric oxide synthase-2 signaling pathway in cystic fibrosis airway epithelium.

Published

Journal Article

Cystic fibrosis (CF) airway epithelial cells are more susceptible to viral infection due to impairment of the innate host defense pathway of nitric oxide (NO). NO synthase-2 (NOS2) expression is absent, and signal transducer and activator of transcription (STAT) 1 activation is reduced in CF. We hypothesized that the IFN-gamma signaling pathway, which leads to NOS2 gene induction in CF airway epithelial cells, is defective. In contrast to a lack of NOS2 induction, the major histocompatibility complex class 2, an IFN-gamma-regulated delayed-responsive gene, is similarly induced in CF and non-CF airway epithelial (NL) cells, suggesting an NOS2-specific defect in the IFN-gamma signaling pathway. STAT1 and activator protein-1, both required for NOS2 gene expression, interact normally in CF cells. Protein inhibitor of activated STAT1 is not increased in CF cells. IFN-gamma induces NOS2 expression in airway epithelial cells through an autocrine mechanism involving synthesis and secretion of IFN-gamma-inducible mediator(s), which activates STAT1. Here, CF cells secrete IFN-gamma-inducible factor(s), which stimulate NOS2 expression in NL cells, but not in CF cells. In contrast, IFN-gamma-inducible factor(s) similarly inhibit virus in CF and NL cells. Thus autocrine activation of NOS2 is defective in CF cells, but IFN-gamma induction of antiviral host defense is intact.

Full Text

Cited Authors

  • Zheng, S; Xu, W; Bose, S; Banerjee, AK; Haque, SJ; Erzurum, SC

Published Date

  • August 2004

Published In

Volume / Issue

  • 287 / 2

Start / End Page

  • L374 - L381

PubMed ID

  • 15107292

Pubmed Central ID

  • 15107292

Electronic International Standard Serial Number (EISSN)

  • 1522-1504

International Standard Serial Number (ISSN)

  • 1040-0605

Digital Object Identifier (DOI)

  • 10.1152/ajplung.00039.2004

Language

  • eng