Mid-IR plasmonics: Near-field imaging of coherent plasmon modes of silver nanowires

Chemically synthesized metallic nanostructures can exhibit a strong local optical field enhancement associated with their high degree of crystallinity and well-defined geometry-dependent surface plasmon resonances. The extension of the plasmon modes into the mid-IR spectral range (3-30 μm) is shown for micrometer-sized nanowires with high aspect ratios available in the form of pentagonally twinned Ag crystallites as grown by polyol synthesis. Using scattering-scanning near-field optical microscopy, the associated IR plasmon modes are identified, and their underlying spatial distribution and enhancement of the optical polarization density is measured via phase, amplitude, and polarization resolved optical vector-field mapping. The transition from dipolar to multipolar resonances is observed and described by modeling the Ag wires using a modified cylindrical waveguide theory. For 10.6 μm excitation, dipole antenna resonances are observed at a resonant length of L = λ eff /2 with λ eff ≈ 10.6 μm/(1.8 ± 0.5) ≈ 6 ± 2 μm. This effective wavelength scaling is the result of electronic damping, despite the high aspect ratios of the wires of order 1:10 to 1:200. With the optical cycle period τIR being comparable to the Drude relaxation time of τ ̃ 40 fs the mid-IR defines the low-energy limit of the coherent plasmon regime (τ IR ≤ τ) at the transition to purely geometric antenna resonances (τ IR > τ). © 2009 American Chemical Society.

Full Text

Duke Authors

Cited Authors

  • Jones, AC; Olmon, RL; Skrabalak, SE; Wiley, BJ; Xia, YN; Raschke, MB

Published Date

  • 2009

Published In

Volume / Issue

  • 9 / 7

Start / End Page

  • 2553 - 2558

International Standard Serial Number (ISSN)

  • 1530-6984

Digital Object Identifier (DOI)

  • 10.1021/nl900638p

Citation Source

  • SciVal