Convergence of vortex methods for weak solutions to the 2‐D euler equations with vortex sheet data


Journal Article

We prove the convergence of vortex blob methods to classical weak solutions for the two‐dimensional incompressible Euler equations with initial data satisfying the conditions that the vorticity is a finite Radon measure of distinguished sign and the kinetic energy is locally bounded. This includes the important example of vortex sheets. The result is valid as long as the computational grid size h does not exceed the smoothing blob size ε, i.e., h/ε ≦ C.. ©1995 John Wiley & Sons, Inc. Copyright © 1995 Wiley Periodicals, Inc., A Wiley Company

Full Text

Duke Authors

Cited Authors

  • Liu, J; Xin, Z

Published Date

  • January 1, 1995

Published In

Volume / Issue

  • 48 / 6

Start / End Page

  • 611 - 628

Electronic International Standard Serial Number (EISSN)

  • 1097-0312

International Standard Serial Number (ISSN)

  • 0010-3640

Digital Object Identifier (DOI)

  • 10.1002/cpa.3160480603

Citation Source

  • Scopus