Cluster algorithms for quantum impurity models and mesoscopic Kondo physics

Published

Journal Article

Nanoscale physics and dynamical mean-field theory have both generated increased interest in complex quantum impurity problems and so have focused attention on the need for flexible quantum impurity solvers. Here we demonstrate that the mapping of single-quantum impurity problems onto spin chains can be exploited to yield a powerful and extremely flexible impurity solver. We implement this cluster algorithm explicitly for the Anderson and Kondo Hamiltonians, and illustrate its use in the "mesoscopic Kondo problem." To study universal Kondo physics, a large ratio between the effective bandwidth Deff and the temperature T is required; our cluster algorithm treats the mesoscopic fluctuations exactly while being able to approach the large Deff T limit with ease. We emphasize that the flexibility of our method allows it to tackle a wide variety of quantum impurity problems; thus, it may also be relevant to the dynamical mean-field theory of lattice problems. © 2005 The American Physical Society.

Full Text

Duke Authors

Cited Authors

  • Yoo, J; Chandrasekharan, S; Kaul, RK; Ullmo, D; Baranger, HU

Published Date

  • January 1, 2005

Published In

Volume / Issue

  • 71 / 20

Electronic International Standard Serial Number (EISSN)

  • 1550-235X

International Standard Serial Number (ISSN)

  • 1098-0121

Digital Object Identifier (DOI)

  • 10.1103/PhysRevB.71.201309

Citation Source

  • Scopus