Quantum link models: A discrete approach to gauge theories
Journal Article (Journal Article)
We construct lattice gauge theories in which the elements of the link matrices are represented by non-commuting operators acting in a Hubert space. These quantum link models are related to ordinary lattice gauge theories in the same way as quantum spin models are related to ordinary classical spin systems. Here U (1) and SU (2) quantum link models are constructed explicitly. As Hamiltonian theories quantum link models are non-relativistic gauge theories with potential applications in condensed matter physics. When formulated with a fifth Euclidean dimension, universality arguments suggest that dimensional reduction to four dimensions occurs. Hence, quantum link models are also reformulations of ordinary quantum field theories and are applicable to particle physics, for example to QCD. The configuration space of quantum link models is discrete and hence their numerical treatment should be simpler than that of ordinary lattice gauge theories with a continuous configuration space. © 1997 Published by Elsevier Science B.V.
Full Text
Duke Authors
Cited Authors
- Chandrasekharan, S; Wiese, UJ
Published Date
- May 12, 1997
Published In
Volume / Issue
- 492 / 1-2
Start / End Page
- 455 - 471
International Standard Serial Number (ISSN)
- 0550-3213
Digital Object Identifier (DOI)
- 10.1016/S0550-3213(97)80041-7
Citation Source
- Scopus