Skip to main content
Journal cover image

Assessment of water quality management with a systematic qualitative uncertainty analysis.

Publication ,  Journal Article
Chen, C-F; Ma, H-W; Reckhow, KH
Published in: The Science of the total environment
March 2007

Uncertainty is an inevitable source of noise in water quality management and will weaken the adequacy of decisions. Uncertainty is derived from imperfect information, natural variability, and knowledge-based inconsistency. To make better decisions, it is necessary to reduce uncertainty. Conventional uncertainty analyses have focused on quantifying the uncertainty of parameters and variables in a probabilistic framework. However, the foundational properties and basic constraints might influence the entire system more than the quantifiable elements and have to be considered in initial analysis steps. According to binary classification, uncertainty includes quantitative uncertainty and non-quantitative uncertainty, which is also called qualitative uncertainty. Qualitative uncertainty originates from human subjective and biased beliefs. This study provides an understanding of qualitative uncertainty in terms of its conceptual definitions and practical applications. A systematic process of qualitative uncertainty analysis is developed for assisting complete uncertainty analysis, in which a qualitative network could then be built with qualitative relationship and quantifiable functions. In the proposed framework, a knowledge elicitation procedure is required to identify influential factors and their interrelationship. To limit biased information, a checklist is helpful to construct the qualitative network. The checklist helps one to ponder arbitrary assumptions that have often been taken for granted and may yield an incomplete or inappropriate decision analysis. The total maximum daily loads (TMDL) program is used as a surrogate for water quality management in this study. 15 uncertainty causes of TMDL programs are elicited by reviewing an influence diagram, and a checklist is formed with tabular interrogations corresponding to each uncertainty cause. The checklist enables decision makers to gain insight on the uncertainty level of the system at early steps as a convenient tool to review the adequacy of a TMDL program. Following the instruction of the checklist, an appropriate algorithm in a form of probability, possibility, or belief may then be assigned for the network. Consequently, the risk or evidence of the success of outcomes will be obtained. The incorporation of the systematic consideration of qualitative uncertainty into water quality management is expected to refine the decision-making process.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

The Science of the total environment

DOI

EISSN

1879-1026

ISSN

0048-9697

Publication Date

March 2007

Volume

374

Issue

1

Start / End Page

13 / 25

Related Subject Headings

  • Water Purification
  • Water Pollution
  • Uncertainty
  • Taiwan
  • Quality Control
  • Models, Theoretical
  • Environmental Sciences
  • Environmental Monitoring
  • Data Interpretation, Statistical
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Chen, C.-F., Ma, H.-W., & Reckhow, K. H. (2007). Assessment of water quality management with a systematic qualitative uncertainty analysis. The Science of the Total Environment, 374(1), 13–25. https://doi.org/10.1016/j.scitotenv.2006.12.027
Chen, Chi-Feng, Hwong-wen Ma, and Kenneth H. Reckhow. “Assessment of water quality management with a systematic qualitative uncertainty analysis.The Science of the Total Environment 374, no. 1 (March 2007): 13–25. https://doi.org/10.1016/j.scitotenv.2006.12.027.
Chen C-F, Ma H-W, Reckhow KH. Assessment of water quality management with a systematic qualitative uncertainty analysis. The Science of the total environment. 2007 Mar;374(1):13–25.
Chen, Chi-Feng, et al. “Assessment of water quality management with a systematic qualitative uncertainty analysis.The Science of the Total Environment, vol. 374, no. 1, Mar. 2007, pp. 13–25. Epmc, doi:10.1016/j.scitotenv.2006.12.027.
Chen C-F, Ma H-W, Reckhow KH. Assessment of water quality management with a systematic qualitative uncertainty analysis. The Science of the total environment. 2007 Mar;374(1):13–25.
Journal cover image

Published In

The Science of the total environment

DOI

EISSN

1879-1026

ISSN

0048-9697

Publication Date

March 2007

Volume

374

Issue

1

Start / End Page

13 / 25

Related Subject Headings

  • Water Purification
  • Water Pollution
  • Uncertainty
  • Taiwan
  • Quality Control
  • Models, Theoretical
  • Environmental Sciences
  • Environmental Monitoring
  • Data Interpretation, Statistical