Comparison of three physiologically-based pharmacokinetic models for the prediction of contrast agent distribution measured by dynamic MR imaging.

Journal Article

PURPOSE: To compare the performance of three physiologically-based pharmacokinetic (PBPK) models for predicting gadolinium contrast agent concentration-time curves (Gd-CTCs) obtained in superior sagittal sinus (SSS), cerebral cortex, and psoas muscle. MATERIALS AND METHODS: Three published whole-body PBPK models were modified to predict Gd-CTCs in normal-appearing tissue. The models differed in the number of organs modeled and total number of compartments, and were designated as the "well-mixed," "delay," and "dispersion" models. The suitability of the three models to predict Gd-CTC was studied using data from dynamic contrast-enhanced MR perfusion imaging obtained at 1.5T from 10 patients with glioblastoma multiforme and at 3.0T from five patients with liver metastases. RESULTS: The dispersion model produced better fits than the delay model in the SSS (P < 0.0001) and cerebral cortex (P < 0.0001), and better fits than the well-mixed model in psoas muscle (P < 0.005). No model produced better fits than the dispersion model at any of the three locations. CONCLUSION: In this evaluation, the dispersion model was most robust for prediction of Gd-CTCs derived from dynamic contrast-enhanced (DCE)-MRI. This represents a preliminary step in the development of a PBPK model useful for predicting Gd-CTCs at a time resolution appropriate for dynamic MRI applications.

Full Text

Duke Authors

Cited Authors

  • Barboriak, DP; MacFall, JR; Viglianti, BL; Dewhirst Dvm, MW

Published Date

  • June 2008

Published In

Volume / Issue

  • 27 / 6

Start / End Page

  • 1388 - 1398

PubMed ID

  • 18504759

International Standard Serial Number (ISSN)

  • 1053-1807

Digital Object Identifier (DOI)

  • 10.1002/jmri.21344

Language

  • eng

Conference Location

  • United States