Repeatability and reproducibility of phase analysis of gated single-photon emission computed tomography myocardial perfusion imaging used to quantify cardiac dyssynchrony.

Published

Journal Article

A novel method to quantify dyssynchrony has been developed using phase analysis of gated single-photon emission computed tomography perfusion imaging. We report on the effect of variability in image reconstruction on the phase analysis results (repeatability) and on the interobserver and intraobserver reproducibility of the technique.Phase standard deviation (SD) and bandwidth are phase indices that quantify dyssynchrony. To evaluate repeatability, raw data sets were processed twice in 50 patients with left ventricular dysfunction and 50 normal controls. To determine the optimal processing method, two replicated phase analysis results were obtained using automated and manual base parameter placement. Reproducibility of the phase analysis was determined using the data from 20 patients.In normal controls, manual base parameter placement improves repeatability of the phase analysis as measured by the mean absolute difference between two reads for phase SD (12.0 degrees vs. 1.2 degrees , P<0.0001) and bandwidth (33.7 degrees vs. 3.6 degrees , P<0.0001). Repeatability is better for normal controls than for patients with left ventricular dysfunction for phase SD (1.2 degrees vs. 6.0 degrees , P<0.0001) and bandwidth (3.6 degrees vs. 26.5 degrees , P<0.0001). Reproducibility of the phase analysis is high as measured by the intraclass correlation coefficients for phase SD and bandwidth of 0.99 and 0.99 for the interobserver comparisons and 1.00 and 1.00 for the intraobserver comparisons.A novel method to quantify dyssynchrony has been developed using gated single-photon emission computed tomography perfusion imaging. Manual base parameter placement reduces the effect that variability in image reconstruction has on phase analysis. A high degree of reproducibility of phase analysis is observed.

Full Text

Duke Authors

Cited Authors

  • Trimble, MA; Velazquez, EJ; Adams, GL; Honeycutt, EF; Pagnanelli, RA; Barnhart, HX; Chen, J; Iskandrian, AE; Garcia, EV; Borges-Neto, S

Published Date

  • April 2008

Published In

Volume / Issue

  • 29 / 4

Start / End Page

  • 374 - 381

PubMed ID

  • 18317303

Pubmed Central ID

  • 18317303

Electronic International Standard Serial Number (EISSN)

  • 1473-5628

International Standard Serial Number (ISSN)

  • 0143-3636

Digital Object Identifier (DOI)

  • 10.1097/MNM.0b013e3282f81380

Language

  • eng