Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms.

Journal Article (Journal Article)

A flexible and fast Monte Carlo-based model of diffuse reflectance has been developed for the extraction of the absorption and scattering properties of turbid media, such as human tissues. This method is valid for a wide range of optical properties and is easily adaptable to existing probe geometries, provided a single phantom calibration measurement is made. A condensed Monte Carlo method was used to speed up the forward simulations. This model was validated by use of two sets of liquid-tissue phantoms containing Nigrosin or hemoglobin as absorbers and polystyrene spheres as scatterers. The phantoms had a wide range of absorption (0-20 cm(-1)) and reduced scattering coefficients (7-33 cm(-1)). Mie theory and a spectrophotometer were used to determine the absorption and reduced scattering coefficients of the phantoms. The diffuse reflectance spectra of the phantoms were measured over a wavelength range of 350-850 nm. It was found that optical properties could be extracted from the experimentally measured diffuse reflectance spectra with an average error of 3% or less for phantoms containing hemoglobin and 12% or less for phantoms containing Nigrosin.

Full Text

Duke Authors

Cited Authors

  • Palmer, GM; Ramanujam, N

Published Date

  • February 10, 2006

Published In

Volume / Issue

  • 45 / 5

Start / End Page

  • 1062 - 1071

PubMed ID

  • 16512550

International Standard Serial Number (ISSN)

  • 1559-128X

Digital Object Identifier (DOI)

  • 10.1364/ao.45.001062


  • eng

Conference Location

  • United States