Monte-Carlo-based model for the extraction of intrinsic fluorescence from turbid media.

Published

Journal Article

A Monte-Carlo-based model of fluorescence is developed that is capable of extracting the intrinsic fluorescence properties of tissue, which are independent of the absorption and scattering properties of tissue. This model is flexible in its applicability to different illumination-collection geometries and is also valid for a wide range of optical properties, representative of tissue in the UV-visible spectrum. This is potentially useful in a variety of biomedical applications, including cancer diagnostics and monitoring the physiological response to therapy. The model is validated using phantoms composed of hemoglobin (absorber), polystyrene spheres (scatterer), and furan-2 (fluorophore). It is found that this model is able to retrieve the intrinsic fluorescence spectra of the tissue phantoms and recover the intrinsic fluorescence intensity of furan within the phantoms to within a mean error of less than 10%.

Full Text

Duke Authors

Cited Authors

  • Palmer, GM; Ramanujam, N

Published Date

  • March 2008

Published In

Volume / Issue

  • 13 / 2

Start / End Page

  • 024017 -

PubMed ID

  • 18465980

Pubmed Central ID

  • 18465980

International Standard Serial Number (ISSN)

  • 1083-3668

Digital Object Identifier (DOI)

  • 10.1117/1.2907161

Language

  • eng

Conference Location

  • United States