Detector or system? Extending the concept of detective quantum efficiency to characterize the performance of digital radiographic imaging systems.

Journal Article (Journal Article)

PURPOSE: To develop an experimental method for measuring the effective detective quantum efficiency (eDQE) of digital radiographic imaging systems and evaluate its use in select imaging systems. MATERIALS AND METHODS: A geometric phantom emulating the attenuation and scatter properties of the adult human thorax was employed to assess eight imaging systems in a total of nine configurations. The noise power spectrum (NPS) was derived from images of the phantom acquired at three exposure levels spanning the operating range of the system. The modulation transfer function (MTF) was measured by using an edge device positioned at the anterior surface of the phantom. Scatter measurements were made by using a beam-stop technique. All measurements, including those of phantom attenuation and estimates of x-ray flux, were used to compute the eDQE. RESULTS: The MTF results showed notable degradation owing to focal spot blur. Scatter fractions ranged between 11% and 56%, depending on the system. The eDQE(0) results ranged from 1%-17%, indicating a reduction of up to one order of magnitude and different rank ordering and performance among systems, compared with that implied in reported conventional detective quantum efficiency results from the same systems. CONCLUSION: The eDQE method was easy to implement, yielded reproducible results, and provided a meaningful reflection of system performance by quantifying image quality in a clinically relevant context. The difference in the magnitude of the measured eDQE and the ideal eDQE of 100% provides a great opportunity for improving the image quality of radiographic and mammographic systems while reducing patient dose.

Full Text

Duke Authors

Cited Authors

  • Samei, E; Ranger, NT; MacKenzie, A; Honey, ID; Dobbins, JT; Ravin, CE

Published Date

  • December 2008

Published In

Volume / Issue

  • 249 / 3

Start / End Page

  • 926 - 937

PubMed ID

  • 19011189

Pubmed Central ID

  • PMC2691810

Electronic International Standard Serial Number (EISSN)

  • 1527-1315

Digital Object Identifier (DOI)

  • 10.1148/radiol.2492071734


  • eng

Conference Location

  • United States