Adaptive divergence in plasticity in natural populations of Impatiens capensis and its consequences for performance in novel habitats.

Published

Journal Article

We tested for adaptive differentiation between two natural populations of Impatiens capensis from sites known to differ in selection on plasticity to density. We also determined the degree to which plasticity to density within a site was correlated with plastic responses of experimental immigrants to foreign sites. Inbred lines, derived from natural populations in an open-canopy site and a woodland site, were planted reciprocally in both original sites at naturally occurring high densities and at low density. The density manipulation represents environmental variation typically experienced within the site of a given population, and the transplant manipulation represents environmental differences between sites of different populations. Internode elongation, meristem allocation, leaf length, flowering date, and total lifetime fitness were measured. Genotypes originating in the open site, where selection favored plasticity of first internode length and flowering time (Donohue et al. 2000a), were more plastic in those characters than genotypes originating from the woodland site, where plasticity was maladaptive. Therefore, these two populations appear to have responded to divergent selection on plasticity. Plasticity to density strongly resembled plasticity to site differences for many characters, suggesting that similar environmental factors elicit plasticity both to density and to overhead canopy. Thus, plasticity that evolved in response to density variation within a site influenced phenotypic expression in the foreign site. Plastic responses to site caused immigrants from foreign populations to resemble native genotypes more closely. In particular, immigrants from the open site converged toward the selectively favored early-flowering phenotype of native genotypes in the woodland site, thereby reducing potential fitness differences between foreign and native genotypes. However, because genotypes from the woods population were less plastic than genotypes from the sun population, phenotypic differences between populations were greatest in the open site at low density. Therefore, population differences in plasticity can cause genotypes from foreign populations to be more strongly selected against in some environments than in others. However, genetic constraints and limits to plasticity prevented complete convergence of immigrants to the native phenotype in any environment.

Full Text

Duke Authors

Cited Authors

  • Donohue, K; Pyle, EH; Messiqua, D; Heschel, MS; Schmitt, J

Published Date

  • April 2001

Published In

Volume / Issue

  • 55 / 4

Start / End Page

  • 692 - 702

PubMed ID

  • 11392387

Pubmed Central ID

  • 11392387

Electronic International Standard Serial Number (EISSN)

  • 1558-5646

International Standard Serial Number (ISSN)

  • 0014-3820

Digital Object Identifier (DOI)

  • 10.1554/0014-3820(2001)055[0692:adipin]2.0.co;2

Language

  • eng