Nucleotide receptors regulate membrane ion transport in renal epithelial cells.

Journal Article (Journal Article)

Regulation of plasma membrane ion transport by endogenous purinergic receptors was assessed in a distal renal (A6) cell line. Nucleotide analogues stimulated Na-K-Cl cotransport activity with relative potencies of ATP > UTP > ATP gamma S > 2-methylthio-ATP = alpha,beta-methylene ATP. Activation of nucleotide receptors with extracellular ATP and nucleotide analogues increased intracellular calcium concentration ([Ca2+]i) primarily by release of intracellular calcium stores, with relative potency of agonists similar to that seen for stimulation of Na-K-Cl cotransport. Neither the change in [Ca2+]i nor the stimulation of cotransport was abolished by the adenosine receptor antagonist 8-(4-[N-(2-aminoethyl)carbamoylmethoxy]-phenyl)-1,3-dipropylxanthi ne (XAC). In contrast to the adenosine A2 receptor agonist 5'-N-ethylcarboxamidoadenosine, nucleotide analogues had no discernible effect on cytosolic adenosine 3',5'-cyclic monophosphate levels or adenylyl cyclase activity. To address possible mechanisms for stimulation of Na-K-Cl cotransport by the nucleotide receptor, 125I efflux and patch-clamp studies were used to measure chloride secretion. ATP and ionomycin markedly enhanced 125I efflux and whole cell currents, consistent with activation of chloride conductance pathways. Diphenylamine-2-carboxylate, a chloride channel blocker, eliminated the effects of ionomycin, forskolin, adenosine, and ATP on Na-K-Cl cotransport. This study demonstrates that nucleotide receptors in this model of renal epithelium initiate distinct regulation of Na-K-Cl cotransport. Nucleotide receptors may effect their responses through primary activation of membrane chloride channels.

Full Text

Duke Authors

Cited Authors

  • Middleton, JP; Mangel, AW; Basavappa, S; Fitz, JG

Published Date

  • May 1993

Published In

Volume / Issue

  • 264 / 5 Pt 2

Start / End Page

  • F867 - F873

PubMed ID

  • 8388653

International Standard Serial Number (ISSN)

  • 0002-9513

Digital Object Identifier (DOI)

  • 10.1152/ajprenal.1993.264.5.F867


  • eng

Conference Location

  • United States