Quantitative optical spectroscopy: a robust tool for direct measurement of breast cancer vascular oxygenation and total hemoglobin content in vivo.

Journal Article (Journal Article)

We propose the use of a robust, biopsy needle-based, fiber-optic tool for routine clinical quantification of tumor oxygenation at the time of diagnostic biopsy for breast cancer. The purpose of this study was to show diffuse reflectance spectroscopy as a quantitative tool to measure oxygenation levels in the vascular compartment of breast cancers in vivo via an optical biopsy technique. Thirty-five patients undergoing surgical treatment for breast cancer were recruited for the study at Duke University Medical Center. Diffuse reflectance spectroscopy was performed on the tumors in situ before surgical resection, followed by needle-core biopsy of the optically measured tissue. Hemoglobin saturation and total hemoglobin content were quantified from 76 optical spectra-tissue biopsy pairs, consisting of 20 malignant, 23 benign, and 33 adipose tissues. Hemoglobin saturation in malignant tissues was significantly lower than nonmalignant tissues (P<0.002) and was negatively correlated with tumor size and pathologic tumor category (P<0.05). Hemoglobin saturation was positively correlated with total hemoglobin content in malignant tissues (P<0.02). HER2/neu-amplified tumors exhibited significantly higher total hemoglobin content (P<0.05) and significantly higher hemoglobin saturation (P<0.02), which is consistent with a model of increased angiogenesis and tumor perfusion promoted by HER2/neu amplification. Diffuse reflectance spectroscopy could aid in prognosis and prediction in breast cancer via quantitative assessment of tumor physiology at the time of diagnostic biopsy.

Full Text

Duke Authors

Cited Authors

  • Brown, JQ; Wilke, LG; Geradts, J; Kennedy, SA; Palmer, GM; Ramanujam, N

Published Date

  • April 1, 2009

Published In

Volume / Issue

  • 69 / 7

Start / End Page

  • 2919 - 2926

PubMed ID

  • 19293184

Pubmed Central ID

  • PMC2677720

Electronic International Standard Serial Number (EISSN)

  • 1538-7445

Digital Object Identifier (DOI)

  • 10.1158/0008-5472.CAN-08-3370


  • eng

Conference Location

  • United States