Ecological genomics of Boechera stricta: identification of a QTL controlling the allocation of methionine- vs branched-chain amino acid-derived glucosinolates and levels of insect herbivory.

Journal Article (Journal Article)

In the Brassicaceae, glucosinolates influence the feeding, reproduction and development of many insect herbivores. Glucosinolate production and effects on herbivore feeding have been extensively studied in the model species, Arabidopsis thaliana and Brassica crops, both of which constitutively produce leaf glucosinolates mostly derived from the amino acid, methionine. Much less is known about the regulation or role in defense of glucosinolates derived from other aliphatic amino acids, such as the branched-chain amino acids (BCAA), valine and isoleucine. We have identified a glucosinolate polymorphism in Boechera stricta controlling the allocation to BCAA- vs methionine-derived glucosinolates in both leaves and seeds. B. stricta is a perennial species that grows in mostly undisturbed habitats of western North America. We have measured glucosinolate profiles and concentrations in 192 F(2) lines that have earlier been used for genetic map construction. We also performed herbivory assays on six F(3) replicates per F(2) line using the generalist lepidopteran, Trichoplusia ni. Quantitative trait locus (QTL) analysis identified a single locus controlling both glucosinolate profile and levels of herbivory, the branched chain-methionine allocation or BCMA QTL. We have delimited this QTL to a small genomic region with a 1.0 LOD confidence interval just 1.9 cm wide, which, in A. thaliana, contains approximately 100 genes. We also found that methionine-derived glucosinolates provided significantly greater defense than the BCAA-derived glucosinolates against feeding by this generalist insect herbivore. The future positional cloning of this locus will allow for testing various adaptive explanations.

Full Text

Duke Authors

Cited Authors

  • Schranz, ME; Manzaneda, AJ; Windsor, AJ; Clauss, MJ; Mitchell-Olds, T

Published Date

  • May 2009

Published In

Volume / Issue

  • 102 / 5

Start / End Page

  • 465 - 474

PubMed ID

  • 19240753

Pubmed Central ID

  • PMC2775550

Electronic International Standard Serial Number (EISSN)

  • 1365-2540

International Standard Serial Number (ISSN)

  • 0018-067X

Digital Object Identifier (DOI)

  • 10.1038/hdy.2009.12


  • eng