Delayed polarization of mononuclear phagocyte transcriptional program by type I interferon isoforms.

Published online

Journal Article

BACKGROUND: Interferon (IFN)-alpha is considered a key modulator of immunopathological processes through a signature-specific activation of mononuclear phagocytes (MPs). This study utilized global transcript analysis to characterize the effects of the entire type I IFN family in comparison to a broad panel of other cytokines on MP previously exposed to Lipopolysaccharide (LPS) stimulation in vitro. RESULTS: Immature peripheral blood CD14+ MPs were stimulated with LPS and 1 hour later with 42 separate soluble factors including cytokines, chemokines, interleukins, growth factors and IFNs. Gene expression profiling of MPs was analyzed 4 and 9 hours after cytokine stimulation. Four hours after stimulation, the transcriptional analysis of MPs revealed two main classes of cytokines: one associated with the alternative and the other with the classical pathway of MP activation without a clear polarization of type I IFNs effects. In contrast, after 9 hours of stimulation most type I IFN isoforms induced a characteristic and unique transcriptional pattern separate from other cytokines. These "signature" IFNs included; IFN-beta, IFN-alpha2b/alpha2, IFN-alphaI, IFN-alpha2, IFN-alphaC, IFN-alphaJ1, IFN-alphaH2, and INF-alpha4B and induced the over-expression of 44 genes, all of which had known functional relationships with IFN such as myxovirus resistance (Mx)-1, Mx-2, and interferon-induced hepatitis C-associated microtubular aggregation protein. A second group of type I IFNs segregated separately and in closer association with the type II IFN-gamma. The phylogenetic relationship of amino acid sequences among type I IFNs did not explain their sub-classification, although differences at positions 94 through 109 and 175 through 189 were present between the signature and other IFNs. CONCLUSION: Seven IFN-alpha isoforms and IFN-beta participate in the late phase polarization of MPs conditioned by LPS. This information broadens the previous view of the central role played by IFN-alpha in autoimmunity and tumor rejection by including and/or excluding an array of related factors likely to be heterogeneously expressed by distinct sub-populations of individuals in sickness or in response to biological therapy.

Full Text

Duke Authors

Cited Authors

  • Stroncek, DF; Basil, C; Nagorsen, D; Deola, S; Aricó, E; Smith, K; Wang, E; Marincola, FM; Panelli, MC

Published Date

  • June 13, 2005

Published In

Volume / Issue

  • 3 /

Start / End Page

  • 24 -

PubMed ID

  • 15953390

Pubmed Central ID

  • 15953390

Electronic International Standard Serial Number (EISSN)

  • 1479-5876

Digital Object Identifier (DOI)

  • 10.1186/1479-5876-3-24

Language

  • eng

Conference Location

  • England