Forecasting the cytokine storm following systemic interleukin (IL)-2 administration.

Published online

Journal Article

Extensive clinical experience has shown that systemic interleukin (IL)-2 administration can induce complete or partial regression of renal cell cancer (RCC) metastases in 15 to 20 % of patients. Since IL-2 has no direct anti-cancer effects, it is believed that cancer regression is mediated either by a direct modulation of immune cell effector functions or through the mediation of soluble factors released as a result of IL-2 administration.We previously observed that transcriptional and protein changes induced by systemic IL-2 administration affect predominantly mononuclear phagocytes with little effect, particularly within the tumor microenvironment, on T cell activation, localization and proliferation. It further appeared that mononuclear phagocyte activation could be best explained by the indirect mediation of a secondary release of cytokines by IL-2 responsive cells either in the circulation or in peripheral tissues.To better characterize the cytokine outburst that follows systemic IL-2 administration we followed the serum levels of 68 soluble factors in ten patients with RCC undergoing high dose (720,000 IU/kg intravenously every 8 hours) IL-2 therapy. Serum was collected before therapy, 3 hours after the 1st and 4th dose and assayed on a multiplexed protein array platform. This study demonstrated that 1) the serum concentration of more than half the soluble factors studied changed significantly during therapy; 2) changes became more dramatic with increasing doses; 3) subclasses of soluble factors displayed different kinetics and 4) cytokine patterns varied quantitatively among patients.This study shows that the cytokine storm that follows systemic IL-2 administration is complex and far-reaching inclusive of soluble factors with disparate, partly redundant and partly contrasting effects on immune function. Therefore comparing in parallel large number of soluble factors, it sets a comprehensive foundation for further elucidation of "cytokine storm" in larger patient pools. Based on this analysis, we propose a prospective collection of serum samples in a larger cohort of patients undergoing IL-2 administration with the purpose of discerning patterns predictive of clinical outcome and toxicity.

Full Text

Duke Authors

Cited Authors

  • Panelli, MC; White, R; Foster, M; Martin, B; Wang, E; Smith, K; Marincola, FM

Published Date

  • June 2, 2004

Published In

Volume / Issue

  • 2 / 1

Start / End Page

  • 17 -

PubMed ID

  • 15175100

Pubmed Central ID

  • 15175100

Electronic International Standard Serial Number (EISSN)

  • 1479-5876

Digital Object Identifier (DOI)

  • 10.1186/1479-5876-2-17

Language

  • eng

Conference Location

  • England