Ionophore 4-BrA23187 transports Zn2+ and Mn2+ with high selectivity over Ca2+.


Journal Article

The cation transport selectivities of the Ca2+ ionophores A23187, Ionomycin, and 4-BrA23187 have been determined using a model system comprised of phospholipid vesicles loaded with the chelator/indicator Quin-2. At pH 7.00 and a 100 microM concentration of the cations, A23187 displays the transport selectivity sequence Zn2+ > Mn2+ > Ca2+ > Co2+ > Ni2+ > Sr2+, with the absolute rates of transport spanning approximately 3 orders of magnitude. Similar data are obtained with Ionomycin, although the relative transport rates of Zn2+ and Mn2+ are equivalent, and the range of absolute rates is decreased by a factor of approximately 3. When values are normalized to those of Ca2+, transport selectivity is seen to be only weakly related to complexation or extraction selectivity. It is also seen that, when used to manipulate Ca2+ (or Mg2+), both ionophores can be expected to alter the distribution of additional divalent cations which have known biological activities. 4-BrA23187 is a low-activity ionophore for Ca2+, compared to A23187 and Ionomycin, while retaining comparable activities as an ionophore for the other cations. As a consequence, 4-BrA23187 is highly selective for the transport of Zn2+ and Mn2+, compared to Ca2+, with selectivity ratios approaching that of valinomycin for K+ over Na+ when conditions are optimal. Plots of the log of the rate of cation transport vs the log of the ionophore concentration indicate that Ca2+ is transported primarily as a 2:1 complex by A23187 and 4-BrA23187, but Zn2+ and Mn2+ are transported, in part, as 1:1 complexes. These findings, together with a postulated low stability of 2:1, compared to 1:1 complexes between 4-BrA23187 and divalent cations, partially explain the novel transport selectivity of this compound. Unlike A23187 or Ionomycin, 4-BrA23187 may be useful for investigating cell regulation by Zn2+ and Mn2+, without interference by regulatory mechanisms which respond to Ca2+.

Full Text

Duke Authors

Cited Authors

  • Erdahl, WL; Chapman, CJ; Wang, E; Taylor, RW; Pfeiffer, DR

Published Date

  • October 29, 1996

Published In

Volume / Issue

  • 35 / 43

Start / End Page

  • 13817 - 13825

PubMed ID

  • 8901524

Pubmed Central ID

  • 8901524

International Standard Serial Number (ISSN)

  • 0006-2960

Digital Object Identifier (DOI)

  • 10.1021/bi961391q


  • eng

Conference Location

  • United States