Signaling pathway for apoptosis: a racetrack for life or death.

Published

Journal Article (Review)

Apoptosis, or programmed cell death, is a gene-directed mechanism activated as a suicidal event to get rid of excess, damaged, or infected cells. The recent astounding pace of research in this area has expanded our horizon of understanding that this mechanism is regulated largely by pro- and anti-apoptosis factors acting for or against the final death event. The driving force behind these factors, either pro-apoptosis or pro-survival, is largely determined by signal transduction pathways, starting with the initiation of a death signal at the plasma membrane, and following through a complex cytoplasmic network before reaching the end point of cell demise. Enmeshed in this intricate cytoplasmic network are many checkpoints, where complexes of pro- and anti-apoptosis factors function to facilitate or deter the death signals. The culmination of the balancing act between these two camps of factors at these signal transduction checkpoints may then result in the final decision to die or to live. Thus, the eventual death of a cell may require successful passage through all the checkpoints, a mechanism Nature has provided as a safeguard to prevent erroneous triggering of death. With the advent of a new biotechnology revolution at the dawn of the new millenium, we look forward to an exciting era when we can gain fuller understanding of the operation of all these checkpoints. Ultimately, this gain will pave the way to control the apoptosis event at the checkpoints, and to support the organism's functionality as long as possible. J. Cell. Biochem. Suppls. 32/33:95-102, 1999.

Full Text

Duke Authors

Cited Authors

  • Wang, E; Marcotte, R; Petroulakis, E

Published Date

  • January 1999

Published In

Volume / Issue

  • Suppl 32-33 /

Start / End Page

  • 95 - 102

PubMed ID

  • 10629108

Pubmed Central ID

  • 10629108

Electronic International Standard Serial Number (EISSN)

  • 1097-4644

International Standard Serial Number (ISSN)

  • 0730-2312

Digital Object Identifier (DOI)

  • 10.1002/(sici)1097-4644(1999)75:32+<95::aid-jcb12>3.0.co;2-f

Language

  • eng