Receptor targeting and heterogeneity at interneuronal nicotinic cholinergic synapses in vivo.

Published

Journal Article (Review)

Within a single neuron the correct targeting of the diverse neurotransmitter receptor types to discrete synaptic regions is crucial for proper function. However, the molecular mechanisms that underlie neuronal receptor clustering and targeting are still largely undefined. Here we report advances in defining the mechanisms that mediate nicotinic acetylcholine receptor (nAChR) targeting to interneuronal synapses. Recent in vivo studies have demonstrated that one subunit plays a critical role in the differentiation of nicotinic cholinergic synapses on vertebrate autonomic neurons. The major cytoplasmic loop of the alpha3 subunit targets specific nAChR subtypes to the synapse. In contrast, nAChR complexes that lack the alpha3 targeting domain are excluded and are perisynaptic. Additional studies have demonstrated a greater complexity to alpha3-nAChR targeting due to a unique postsynaptic receptor microheterogeneity - under one presynaptic terminal, alpha3-nAChR clusters are separate, but proximal to, glycine receptor (GlyR) clusters in discrete postsynaptic membrane microregions. The surprising coexistence under one nerve ending of separate clusters of receptors that respond to different fast-acting transmitters with opposing functions may represent a novel mechanism for modulating synaptic activity. Overall, the receptor targeting and clustering studies reviewed in this issue suggest that a common mechanism underlies the formation of the diverse types of interneuronal synapses but differs from that responsible for neuromuscular junction assembly in vertebrates.

Full Text

Duke Authors

Cited Authors

  • Temburni, MK; Blitzblau, RC; Jacob, MH

Published Date

  • May 2000

Published In

Volume / Issue

  • 525 Pt 1 /

Start / End Page

  • 21 - 29

PubMed ID

  • 10811721

Pubmed Central ID

  • 10811721

Electronic International Standard Serial Number (EISSN)

  • 1469-7793

International Standard Serial Number (ISSN)

  • 0022-3751

Digital Object Identifier (DOI)

  • 10.1111/j.1469-7793.2000.00021.x

Language

  • eng