Coalescent-based estimation of population parameters when the number of demes changes over time

Journal Article

We expand a coalescent-based method that uses serially sampled genetic data from a subdivided population to incorporate changes to the number of demes and patterns of colonization. Often, when estimating population parameters or other parameters of interest from genetic data, the demographic structure and parameters are not constant over evolutionary time. In this paper, we develop a Bayesian Markov chain Monte Carlo method that allows for step changes in mutation, migration, and population sizes, as well as changing numbers of demes, where the times of these changes are also estimated. We show that in parameter ranges of interest, reliable estimates can often be obtained, including the historical times of parameter changes. However, posterior densities of migration rates can be quite diffuse and estimators somewhat biased, as reported by other authors. © The Author 2006. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved.

Full Text

Duke Authors

Cited Authors

  • Ewing, G; Rodrigo, A

Published Date

  • 2006

Published In

Volume / Issue

  • 23 / 5

Start / End Page

  • 988 - 996

International Standard Serial Number (ISSN)

  • 0737-4038

Digital Object Identifier (DOI)

  • 10.1093/molbev/msj111