Skip to main content
Journal cover image

Optimizing single-molecule conductivity of conjugated organic oligomers with carbodithioate linkers.

Publication ,  Journal Article
Xing, Y; Park, T-H; Venkatramani, R; Keinan, S; Beratan, DN; Therien, MJ; Borguet, E
Published in: Journal of the American Chemical Society
June 2010

In molecular electronics, the linker group, which attaches the functional molecular core to the electrode, plays a crucial role in determining the overall conductivity of the molecular junction. While much focus has been placed on optimizing molecular core conductivity, there have been relatively few attempts at designing optimal linker groups to metallic or semiconducting electrodes. The vast majority of molecular electronic studies use thiol linker groups; work probing alternative amine linker systems has only recently been explored. Here, we probe single-molecule conductances in phenylene-ethynylene molecules terminated with thiol and carbodithioate linkers, experimentally using STM break-junction methods and theoretically using a nonequilibrium Green's function approach. Experimental studies demonstrate that the carbodithioate linker augments electronic coupling to the metal electrode and lowers the effective barrier for charge transport relative to the conventional thiol linker, thus enhancing the conductance of the linker-phenylene-ethynylene-linker unit; these data underscore that phenylene-ethynylene-based structures are more highly conductive than originally appreciated in molecular electronics applications. The theoretical analysis shows that the nature of sulfur hybridization in these species is responsible for the order-of-magnitude increased conductance in carbodithioate-terminated systems relative to identical conjugated structures that feature classic thiol linkers, independent of the mechanism of charge transport. Interestingly, in these systems, the tunneling current is not dominated by the frontier molecular orbitals. While barriers

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Journal of the American Chemical Society

DOI

EISSN

1520-5126

ISSN

0002-7863

Publication Date

June 2010

Volume

132

Issue

23

Start / End Page

7946 / 7956

Related Subject Headings

  • Thiocarbamates
  • Quantum Theory
  • Polymers
  • Molecular Conformation
  • Models, Molecular
  • General Chemistry
  • Electric Conductivity
  • 40 Engineering
  • 34 Chemical sciences
  • 03 Chemical Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Xing, Y., Park, T.-H., Venkatramani, R., Keinan, S., Beratan, D. N., Therien, M. J., & Borguet, E. (2010). Optimizing single-molecule conductivity of conjugated organic oligomers with carbodithioate linkers. Journal of the American Chemical Society, 132(23), 7946–7956. https://doi.org/10.1021/ja909559m
Xing, Yangjun, Tae-Hong Park, Ravindra Venkatramani, Shahar Keinan, David N. Beratan, Michael J. Therien, and Eric Borguet. “Optimizing single-molecule conductivity of conjugated organic oligomers with carbodithioate linkers.Journal of the American Chemical Society 132, no. 23 (June 2010): 7946–56. https://doi.org/10.1021/ja909559m.
Xing Y, Park T-H, Venkatramani R, Keinan S, Beratan DN, Therien MJ, et al. Optimizing single-molecule conductivity of conjugated organic oligomers with carbodithioate linkers. Journal of the American Chemical Society. 2010 Jun;132(23):7946–56.
Xing, Yangjun, et al. “Optimizing single-molecule conductivity of conjugated organic oligomers with carbodithioate linkers.Journal of the American Chemical Society, vol. 132, no. 23, June 2010, pp. 7946–56. Epmc, doi:10.1021/ja909559m.
Xing Y, Park T-H, Venkatramani R, Keinan S, Beratan DN, Therien MJ, Borguet E. Optimizing single-molecule conductivity of conjugated organic oligomers with carbodithioate linkers. Journal of the American Chemical Society. 2010 Jun;132(23):7946–7956.
Journal cover image

Published In

Journal of the American Chemical Society

DOI

EISSN

1520-5126

ISSN

0002-7863

Publication Date

June 2010

Volume

132

Issue

23

Start / End Page

7946 / 7956

Related Subject Headings

  • Thiocarbamates
  • Quantum Theory
  • Polymers
  • Molecular Conformation
  • Models, Molecular
  • General Chemistry
  • Electric Conductivity
  • 40 Engineering
  • 34 Chemical sciences
  • 03 Chemical Sciences