Conductance of quantum impurity models from quantum monte carlo

Journal Article

The conductance of two Anderson impurity models, one with twofold and another with fourfold degeneracy, representing two types of quantum dots, is calculated using a world-line quantum Monte Carlo (QMC) method. Extrapolation of the imaginary time QMC data to zero frequency yields the linear conductance, which is then compared to numerical renormalization-group results in order to assess its accuracy. We find that the method gives excellent results at low temperature (T TK) throughout the mixed-valence and Kondo regimes but it is unreliable for higher temperature. © 2010 The American Physical Society.

Full Text

Duke Authors

Cited Authors

  • Liu, DE; Chandrasekharan, S; Baranger, HU

Published Date

  • October 28, 2010

Published In

Volume / Issue

  • 82 / 16

Electronic International Standard Serial Number (EISSN)

  • 1550-235X

International Standard Serial Number (ISSN)

  • 1098-0121

Digital Object Identifier (DOI)

  • 10.1103/PhysRevB.82.165447

Citation Source

  • Scopus