Skip to main content

Iron and silic acid controls on phytoplankton composition and productivity assessed by Si, C, and N utilization in the central equatorial Pacific Ocean

Publication ,  Journal Article
Marchetti, A; Varela, D; Lance, VP; Johnson, ZI; Armbrust, EV
Published in: Limnology and Oceanography
2010

A microcosm nutrient-amendment experiment using central equatorial Pacific Ocean (0°, 140°W) mixed-layer waters was conducted to determine biogeochemical controls on phytoplankton with an emphasis on post-iron enrichment nutrient uptake dynamics and species composition. The addition of either Fe (termed Fe-only) or Fe and Si(OH)4 (termed FeSi) to on-deck incubations resulted in growth primarily of pennate diatoms, with statistically equivalent increases relative to the control in maximum photochemical efficiency, chlorophyll a (Chl a) concentrations, particulate organic carbon and nitrogen concentrations, and dissolved inorganic carbon uptake rates. In contrast, at peak Chl a concentrations, there was a 3.4-fold higher abundance of large diatoms and a 3.9- fold lower abundance of small pennate diatoms in FeSi relative to Fe-only, which translated into a 3.5-fold higher Si(OH)4 uptake rate and a 2.1-fold higher biogenic silica concentration. Fourier transform infrared spectroscopy indicated that relative to cells from Fe-only, cells from FeSi possessed the lowest protein : carbohydrate ratios, and ratios of lipids, proteins, and carbohydrates relative to silica, consistent with differences in diatom C allocation or increased silicification or both. Our results suggest that after Fe addition, diatom organic matter accumulation rates (i.e., C and N uptake rates) are enhanced but the low, ambient [Si(OH)4] retards cell division rates, resulting in fewer large diatoms with relatively high C and N contents. After the simultaneous addition of Fe and Si(OH)4, enhanced rates of diatom organic matter accumulation and cell division results in more large, heavily silicified diatoms with relatively low C and N contents.

Duke Scholars

Published In

Limnology and Oceanography

Publication Date

2010

Volume

55

Start / End Page

11 / 29

Related Subject Headings

  • Marine Biology & Hydrobiology
  • 06 Biological Sciences
  • 05 Environmental Sciences
  • 04 Earth Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Marchetti, A., Varela, D., Lance, V. P., Johnson, Z. I., & Armbrust, E. V. (2010). Iron and silic acid controls on phytoplankton composition and productivity assessed by Si, C, and N utilization in the central equatorial Pacific Ocean. Limnology and Oceanography, 55, 11–29.
Marchetti, A., D. Varela, V. P. Lance, Z. I. Johnson, and E. V. Armbrust. “Iron and silic acid controls on phytoplankton composition and productivity assessed by Si, C, and N utilization in the central equatorial Pacific Ocean.” Limnology and Oceanography 55 (2010): 11–29.
Marchetti A, Varela D, Lance VP, Johnson ZI, Armbrust EV. Iron and silic acid controls on phytoplankton composition and productivity assessed by Si, C, and N utilization in the central equatorial Pacific Ocean. Limnology and Oceanography. 2010;55:11–29.
Marchetti A, Varela D, Lance VP, Johnson ZI, Armbrust EV. Iron and silic acid controls on phytoplankton composition and productivity assessed by Si, C, and N utilization in the central equatorial Pacific Ocean. Limnology and Oceanography. 2010;55:11–29.

Published In

Limnology and Oceanography

Publication Date

2010

Volume

55

Start / End Page

11 / 29

Related Subject Headings

  • Marine Biology & Hydrobiology
  • 06 Biological Sciences
  • 05 Environmental Sciences
  • 04 Earth Sciences