Feasibility of sparing lung and other thoracic structures with intensity-modulated radiotherapy for non-small-cell lung cancer.

Published

Journal Article

PURPOSE: To investigate the possibility of using intensity-modulated radiotherapy (IMRT) to reduce the irradiated volumes of the normal lung and other critical structures in the treatment of non-small-cell lung cancer (NSCLC) and to investigate the effect of IMRT on the potential of spreading low doses to large volumes of normal tissues in such treatment. METHODS AND MATERIALS: A retrospective treatment planning study was performed to compare IMRT and conventional three-dimensional conformal radiation therapy (3D-CRT) for 10 NSCLC patients (Stage I-IIIB). In the IMRT plans, three to nine coplanar beams were designed to treat 95% of the planning target volume with 63 Gy and to minimize the volumes of the normal lung, esophagus, heart, and spinal cord irradiated above their tolerance doses. The two types of plans were compared with respect to the planning target volume coverage, dose-volume histograms, and other dosimetric indexes of the normal structures. RESULTS: Comparing the nine-beam IMRT plan with the 3D-CRT plan, the percentage of lung volume that received >20 Gy and the mean lung dose were reduced for all cases, with a median reduction of 8% and 2 Gy, respectively. An additional reduction of the >5-Gy volume and >10-Gy volume for the lung and thoracic tissue was more difficult with IMRT, although still possible using fewer beams in IMRT. The integral dose to the entire thorax was equivalent and even reduced for 8 of 10 cases using IMRT. CONCLUSION: It is possible to reduce the volumes of low doses (such as the >10-Gy volume and >20-Gy volume) for thoracic normal tissues using IMRT. The increased integral dose and low-dose volumes can be avoided for IMRT if such concerns are addressed carefully in the inverse planning process and with optimization of the IMRT beam configuration.

Full Text

Duke Authors

Cited Authors

  • Liu, HH; Wang, X; Dong, L; Wu, Q; Liao, Z; Stevens, CW; Guerrero, TM; Komaki, R; Cox, JD; Mohan, R

Published Date

  • March 2004

Published In

Volume / Issue

  • 58 / 4

Start / End Page

  • 1268 - 1279

PubMed ID

  • 15001272

Pubmed Central ID

  • 15001272

Electronic International Standard Serial Number (EISSN)

  • 1879-355X

International Standard Serial Number (ISSN)

  • 0360-3016

Digital Object Identifier (DOI)

  • 10.1016/j.ijrobp.2003.09.085

Language

  • eng