Cardiac alternans arising from an unfolded border-collision bifurcation

Published

Journal Article

Following an electrical stimulus, the transmembrane voltage of cardiac tissue rises rapidly and remains at a constant value before returning to the resting value, a phenomenon known as an action potential. When the pacing rate of a periodic train of stimuli is increased above a critical value, the action potential undergoes a period-doubling bifurcation, where the resulting alternation of the action potential duration is known as alternans in the medical literature. In principle, a period-doubling bifurcation may occur through either a smooth or a nonsmooth mechanism. Previous experiments reveal that the bifurcation to alternans exhibits hybrid smooth/nonsmooth behaviors, which is due to large variations in the system's properties over a small interval of bifurcation parameter. To reproduce the experimentally observed hybrid behaviors, we have developed a model of alternans that exhibits an unfolded border-collision bifurcation. Excellent agreement between simulation of the model and experimental data suggests that features of the unfolded border-collision model should be included in modeling cardiac alternans. Copyright © 2007 by ASME.

Full Text

Duke Authors

Cited Authors

  • Zhao, X; Schaeffer, DG; Berger, CM; Krassowska, W; Gauthier, DJ

Published Date

  • June 19, 2008

Published In

  • 2007 Proceedings of the Asme International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Detc2007

Volume / Issue

  • 5 PART A /

Start / End Page

  • 223 - 232

Digital Object Identifier (DOI)

  • 10.1115/DETC2007-35304

Citation Source

  • Scopus