Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter


Journal Article

The mineralization of nitrogen and phosphorus from plant residues provides an important input of inorganic nutrients to the soil, which can be taken up by plants. The dynamics of nutrient mineralization or immobilization during decomposition are controlled by different biological and physical factors. Decomposers sequester carbon and nutrients from organic substrates and exchange inorganic nutrients with the environment to maintain their stoichiometric balance. Additionally, physical losses of organic compounds from leaching and other processes may alter the nutrient content of litter. In this work, we extend a stoichiometric model of litter nitrogen mineralization to include (1) phosphorus mineralization, (2) physical losses of organic nutrients, and (3) chemical heterogeneity of litter substrates The enhanced model provides analytical mineralization curves for nitrogen and phosphorus as well as critical litter carbon : nutrient ratios (the carbon : nutrient ratios below which net nutrient release occurs) as a function of the elemental composition of the decomposers, their carbon-use efficiency, and the rate of physical loss of organic compounds. The model is used to infer the critical litter carbon : nutrient ratios from observed nitrogen and phosphorus dynamics in about 2600 litterbag samplings from 21 decomposition data sets spanning artic to tropical ecosystems. At the beginning of decomposition, nitrogen and phosphorus tend to be immobilized in boreal and temperate climates (i.e., both C:N and C:P critical ratios are lower than the initial ratios), while in tropical areas nitrogen is generally released and phosphorus may be either immobilized or released, regardless of the typically low phosphorus concentrations. The critical carbon : nutrient ratios we observed were found to increase with initial litter carbon : nutrient ratios, indicating that decomposers adapt to low-nutrient conditions by reducing their carbon-use efficiency. This stoichiometric control on nutrient dynamics appears ubiquitous across climatic regions and ecosystems, although other biological and physical processes also play important roles in litter decomposition. In tropical humid conditions, we found high critical C:P ratios likely due to high leaching and low decomposer phosphorus concentrations. In general, the compound effects of stoichiometric constraints and physical losses explain most of the variability in critical carbon : nutrient ratios and dynamics of nutrient immobilization and release at the global scale. © 2010 by the Ecological Society of America.

Full Text

Duke Authors

Cited Authors

  • Manzoni, S; Trofymow, JA; Jackson, RB; Porporato, A

Published Date

  • February 1, 2010

Published In

Volume / Issue

  • 80 / 1

Start / End Page

  • 89 - 106

Electronic International Standard Serial Number (EISSN)

  • 1557-7015

International Standard Serial Number (ISSN)

  • 0012-9615

Digital Object Identifier (DOI)

  • 10.1890/09-0179.1

Citation Source

  • Scopus