A robust platform for the synthesis of new tetracycline antibiotics.

Published

Journal Article

Tetracyclines and tetracycline analogues are prepared by a convergent, single-step Michael-Claisen condensation of AB precursor 1 or 2 with D-ring precursors of wide structural variability, followed by removal of protective groups (typically in two steps). A number of procedural variants of the key C-ring-forming reaction are illustrated in multiple examples. These include stepwise deprotonation of a D-ring precursor followed by addition of 1 or 2, in situ deprotonation of a D-ring precursor in mixture with 1 or 2, and in situ lithium-halogen exchange of a benzylic bromide D-ring precursor in the presence of 1 or 2, followed by warming. The AB plus D strategy for tetracycline synthesis by C-ring construction is shown to be robust across a range of different carbocyclic and heterocyclic D-ring precursors, proceeding reliably and with a high degree of stereochemical control. Evidence suggests that Michael addition of the benzylic anion derived from a given D-ring precursor to enones 1 or 2 is quite rapid at -78 degrees C, while Claisen cyclization of the enolate produced is rate-determining, typically occurring upon warming to 0 degrees C. The AB plus D coupling strategy is also shown to be useful for the construction of tetracycline precursors that are diversifiable by latter-stage transformations, subsequent to cyclization to form the C ring. Results of antibacterial assays and preliminary data obtained from a murine septicemia model show that many of the novel tetracyclines synthesized have potent antibiotic activities, both in bacterial cell culture and in vivo. The platform for tetracycline synthesis described gives access to a broad range of molecules that would be inaccessible by semisynthetic methods (presently the only means of tetracycline production) and provides a powerful engine for the discovery and, perhaps, development of new tetracycline antibiotics.

Full Text

Duke Authors

Cited Authors

  • Sun, C; Wang, Q; Brubaker, JD; Wright, PM; Lerner, CD; Noson, K; Charest, M; Siegel, DR; Wang, Y-M; Myers, AG

Published Date

  • December 2008

Published In

Volume / Issue

  • 130 / 52

Start / End Page

  • 17913 - 17927

PubMed ID

  • 19053822

Pubmed Central ID

  • 19053822

Electronic International Standard Serial Number (EISSN)

  • 1520-5126

International Standard Serial Number (ISSN)

  • 0002-7863

Digital Object Identifier (DOI)

  • 10.1021/ja806629e

Language

  • eng