Metamaterial-enhanced coupling between magnetic dipoles for efficient wireless power transfer
Published
Journal Article
Nonradiative coupling between conductive coils is a candidate mechanism for wireless energy transfer applications. In this paper we propose a power relay system based on a near-field metamaterial superlens and present a thorough theoretical analysis of this system. We use time-harmonic circuit formalism to describe all interactions between two coils attached to external circuits and a slab of anisotropic medium with homogeneous permittivity and permeability. The fields of the coils are found in the point-dipole approximation using Sommerfeld integrals which are reduced to standard special functions in the long-wavelength limit. We show that, even with a realistic magnetic loss tangent of order 0.1, the power transfer efficiency with the slab can be an order of magnitude greater than free-space efficiency when the load resistance exceeds a certain threshold value. We also find that the volume occupied by the metamaterial between the coils can be greatly compressed by employing magnetic permeability with a large anisotropy ratio. © 2011 American Physical Society.
Full Text
Duke Authors
Cited Authors
- Urzhumov, Y; Smith, DR
Published Date
- May 18, 2011
Published In
Volume / Issue
- 83 / 20
Electronic International Standard Serial Number (EISSN)
- 1550-235X
International Standard Serial Number (ISSN)
- 1098-0121
Digital Object Identifier (DOI)
- 10.1103/PhysRevB.83.205114
Citation Source
- Scopus